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Simultaneous Measurement of Thermal Diffusivity 
and Specific Heat at High Temperatures by a 
Single Rectangular Pulse Heating Method 1 

K. Kobayasi 2 

A method for the simultaneous measurement of thermal diffusivity and specific 
heat by a single rectangular heating pulse on a finite cylindrical specimen is 
described. The method takes into account radiation losses from all the surfaces 
of the specimen. The theoretical principle of the technique was studied by solv- 
ing the transient heat conduction equation for a finite disk heated on the front 
surface by a single rectangular radiant energy pulse. An apparatus was construc- 
ted to comply with the theoretical conditions and was connected to a personal 
computer. Thermal diffusivity and specific heat were determined from the data 
obtained on the temperature response of the back surface of the specimen and 
from the theoretical results. This method can be applied to materials having a 
wide range of thermal conductivity values and has a good accuracy at high tem- 
peratures. Examples of the measurements are presented. 

KEY WORDS:  high temperatures; pulse heating; specific heat; thermal conduc- 
tivity; thermal diffusivity. 

1. I N T R O D U C T I O N  

There are no definite techniques to measure a wide range of thermal con- 
ductivity values and temperatures with only one apparatus. The conven- 
tional technique that utilizes steady-state heat flow takes too much time for 
measurements and is subject to difficulties which increase with increasing 
temperature. These difficulties are due to the problems associated with 
maintaining proper steady state conditions at high temperatures. 
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Cowan [1 ] conducted theoretical studies on transient methods for an 
infinite slab by stepwise, pulsewise, and periodic heating for determining 
thermal diffusivity. His conclusion was that the stepwise heating method 
would probably yield poor results. 

On the other hand, Parker et al. [-2] reported a transient method 
which yielded thermal diffusivity from the measurements of the temperature 
response of the specimen after being irradiated with a light flash and 
demonstrated the possibility of short time measurements. This method has 
been modified and used by many researchers, e.g., Refs. 3 and 4; various 
pulse radiant energy sources, including lasers, have been and continue to 
be used. However, this technique is not suitable for measurements on 
materials with a low thermal conductivity, such as nonmetals and ceramics, 
due to the fact that in those cases the total absorbed energy resulting from 
the pulse radiation is small. 

This author and other investigators developed a measuring technique 
by the stepwise heating method, taking into account radiation heat loss 
from the specimen [5-11]. 

In this paper, the theoretical principle is presented for the 
simultaneous measurement of thermal diffusivity and specific heat by a 
single rectangular heating pulse on a finite cylindrical specimen, taking into 
account radiation losses from all o f  its surfaces. The development of an 
apparatus that can be used for materials having a wide range of thermal 
conductivities and is accurate at high temperatures is also presented. 

2. MEASUREMENT THEORY 

2.1. Thermal Diffusivity 

As shown in Fig. 1 we assume that the front surface (x = l) of a disk- 
shaped specimen, which is in vacuum and is in thermal equilibrium with 
the ambient temperature To, is heated by a single rectangular radiant heat 
pulse with intensity Ho/et and time width 3, where ~t denotes the emissivity 
of the front surface. Under these conditions, we investigated a method to 
find the thermal diffusivity and specific heat by the temperature rise of the 
rear surface (x = 0) of the specimen. Heat losses from the specimen by con- 
vection and conduction may be neglected when it is in vacuum. 

The solution for finding the temperature rise, when the specimen is 
heated by a single rectangular pulse of width 3, is obtained by subtracting 
the solution resulting from stepwise heating at t = 6 from the solution 
resulting from the same heating at t : 0. 
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Fig. 1. Schematic diagram of the method of heating 
of a single rectangular pulse on a finite-cylindrical 
specimen. 

The fundamenta l  equat ion  and initial and bounda ry  condit ions for the 
case of stepwise heat ing of the specimen at t = 0 are expressed as follows: 
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where 0, t, a, x, r, ro, and 2 express the temperature difference, time, ther- 
mal diffusivity, axial and radial coordinates, radius of the specimen, and 
thermal conductivity, respectively. 

Heat absorbed at the front surface is denoted by H o and the radiation 
heat losses from the surfaces of the specimen are linearized as follows: 

~xr To + 0) 4 - -  8,x ( [T  4 ~ 4e~r  = WxO (7) 

because the temperature rise 0 is small compared with To, i.e., 0 4 T o ,  
where ex, ~, and Wx express the emissivity (x = 0, l, r), Stefan-Boltzmann 
constant, and Wx = 4exaT03, respectively. 

If we choose nondimensional quantities as follows, 

0 = O/(Hol/2) ,  R = r/ro, X =  x / l  

Fo = at / l  2, Bo = Wol /2 ,  Bt  = Wtl /2 (8) 

Br = Wrro/2,  ~o = ro/l 

where Fo and B x (x = 0, l, r) denote the Fourier and Biot numbers and 70 is 
the radius-to-thickness ratio of the specimen, Eqs. (1)-(6) are expressed as 
follows: 

00  1 / 020  1 00"~ 020 

0 F 0 -  ~ kO-R--2 + R~-R) + 3X 2 
( o < x < l )  (9) 

00  
O---~=BoO ( X = 0 )  (10) 

00  
- - =  1-B,O (X= 1) (11) 
0X 

00  
8---~ = - B r O  ( R = I )  (12) 

30  
3---~ = 0 ( R = 0 )  (13) 

O = 0 (F o ~< 0) (14) 

The solution of Eq. (9) for the conditions given by Eqs. (10)-(14) is 
obtained as follows [5]:  
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2BrJo(W.R) ~u,, cosh(u .X)+ B0 sinh(u.X) 
O(R, %, Fo) .=12" (w~ + B~) Jo(W.) ~t~-. o--~h ~. + (8 + .2.) sinh . .  

"/)m COS(VmX) ~- Bo sin(VmX) 
2 

m ~=1 (U- 2 + V2m) Dm 

• exp[-(u.  ~ + vs Fo]} (15) 

where wn is the nth root of 

wJl(w) - BrJo(w) = 0 (16) 

and Vm is the ruth root of 

~v cos v + (/7 - v 2) sin v = 0 (17) 

and the parameters are expressed as follows: 

u. -- wn/7o (18) 

= B0 + Bt (19) 

8 = BoBl (20) 

D.. = sin Vm[1 + ~ -- (28/7) + (V2/e) + (8/V 2) + (82/~V2.,)] (21) 

Similarly, the solution resulting from stepwise heating at t =  ($ is 
obtained by substitution of (t-~$) for t in Eq. (15) as follows: 

2BrJo(wnR) ~u. cosh(u.X) + Bo sinh(u.,X) 
O(R,X, Fo-Fe,)= 

n = l  

~. v., cos(vmX) + Bo sin(vmY) 
2 

m = ( u2 + V2m) D,. 

+ vS)(F o - Fa)]} (22) x exp[ 

where Fa = aS/F is the Fourier number based on time width 5. 
Therefore, the solution for the heating of a rectangular pulse is 

obtained by subtracting Eq. (22) from Eq. (15) as follows: 

O(R, X, Fo) -O(R ,  X, F o -  F~) 

oo ~ B~Jo(w.R ) V m cos(vmX) + B 0 sin(v,.X) 
4 

.~ (w~ + B:.) ao(W.) (u. + v~) nm = 1  m = l  

•  )2 Fo]{exp[(u]+ 2 Vm) F~] 1} (23) 
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while Eq. (15) is still applicable for 0 ~< t ~< 5. Then the temperature rise at 
the center of the rear surface of the specimen is obtained as follows: 

2B~ { un 
0(0, O, Fo) = ~ (w~ + B2r ) Jo(wn) su n cosh u~ + (fi + Un 2) sinh un 

r t ~ l  

- 2  expE(u +    ol} 
,, = ,  (u 2 + v~)  Dm 

(24) 

L Br v m 
e ( o ,  o, Fo) = 4 (u 2 + V2m) go(wn) (U2n + V2m) Dm 

n = l m = l  

xexpE-(uZ+vZ)Fo]{exp[(u~+vZ)Fa]- l} ,  t>5 (25) 

If the emissivities are the same on all the surfaces of the specimen, 
So = ~l = Sr, we obtain 

B o = B l = c(2 (26) 

Br = BoTo = ~t7o/2 (27) 

fi =- 0~2/4 (28) 

Therefore, Eq. (24) becomes a function of Fo, with a parameter ~, and 
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Fig. 2. Dimensionless temperature rise at the rear center of the specimen. 



Thermal Diffusivity and Specific Heat by Pulse Heating 187 

Eq. (25), with parameters e and F~, when the ratio 7o of the radius to the 
thickness of the specimen is given. Figure 2 shows an example of the 
theoretical temperature rise in this case, i.e., the curves in Fig. 2 show the 
calculation of the temperature rise at the center of the rear surface of the 
specimen versus dimensionless time Fo in the case of F~ = 0.5 for three 
kinds of specimen shapes, 7o - - ro / l=  1.0, 0.5, and 0.25. The curve e = 0 
means the case without radiation loss from the specimen, and the loss 
increases according to e=0 .2 ,  0.5. These curves are similar to those 
obtained in actual measurements. However, they are dimensionless tem- 
perature rises and include the heat flux Ho, which is unknown. So we selec- 
ted two arbitrary times, t~ and t~, which corresponded to Fol and Fo~ on a 
curve, to eliminate Ho so as to be 

Fol = 2Fo~ (29) 

and made a ratio of the temperature rise at the two Fourier numbers. 
Then, we obtained curves of the ratios of the temperature rise versus 
Fol(~Fo) as shown in Fig. 3. For  any actual measurement, Fo(=atl/I 2) is 
determined from curves as in Fig. 3 after finding a ratio of 01/0~ by two 
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Fig. 3. Ratios of the temperature rise versus the 
Fourier number. 
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temperature rises, 01 and 0~, at arbitrary times tl and t~_ on a curve of tern- 2 
perature rise and a parameter a. Then, the thermal diffusivity a is obtained 
from Fo, as the specimen thickness l and time tl are known. 

The radiation heat loss parameter ~ is expressed as follows: 

= Bo + BI = 8eoaT3l/acp (30) 

and this ~ includes a and c, which are also going to be measured. The way 
to find the value of ~ in such cases has already been published [5, 12]; i.e., 
we calculate ~ by using assumed values of a and c which are supposed to 
be the nearest values at first, find a from curves as in Fig. 3 by using this 
next, and calculate ~ again by substituting the values of the second a and c 
into Eq. (30). The second c is found in another way described in the next 
section. We can obtain converged values of a, c, and ~ by making such 
iterations several times. 

2.2. Specific Heat 

Specific heat is determined from the known heat flux during the 
irradiation and the observed maximum temperature rise. 

When the front surface of the specimen is heated by irradiation of a 
single rectangular pulse of width 5, the dimensionless temperature rise at 
the center of the rear surface of the specimen is given by Eq. (25). If we can 
neglect the radiation loss from the specimen, the temperature rise takes the 
value on the curve for a = 0 and reaches a constant value O . . . .  t(0 . . . .  t) at 
F0 - ,  ~ ( t - ,  ~ )  as shown in Fig. 2. Therefore, the following equation is 
obtained in this case. 

/ /o5 
c - - -  (31) 

plO . . . .  t 

The heating flux Ho is found beforehand by a similar operation using a 
reference specimen whose specific heat is well known [12]. 

If we cannot neglect the radiation heat loss from the specimen at high 
temperatures, the temperature rise takes curves with maximum value 
Omax(0max) as shown in Fig. 2. Then, specific heat c is expressed by the 
following equation, which includes a correction factor M 

Ho6 
c = - -  (32) 

plOma• 
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Fig. 4. Correction factor 3# versus Fourier number F~. 

where 

M=O . . . .  t O . . . .  t (33) 
0ma• Omax 

and O m a  x and O . . . .  t express the dimensionless maximum temperature rise 
with and without the radiation heat loss from the specimen. Therefore, in 
theory, the factor M is given as a function of the variable F6 with the 
parameter ~ for a definite 70. Figure 4 shows an example of the calculation 
of M. Then, specific heat c is determined from Eq. (32) by using 0 . . . .  
which is obtained from the measured temperature rise at the rear center of 
the specimen, and a correction factor M, which is determined from a curve 
theoretically similar to the one shown in Fig. 4, for F6, which is calculated 
with a value of thermal diffusivity a found in the way described in Sec- 
tion 2.1. 

3. CONSIDERATION OF ACCURACY BASED ON TH E SPECIMEN 
G E O M E T R Y  F O R  T H E  T W O  T H E O R E T I C A L  M O D E L S  

Differences between the results of the two theoretical models for 
infinite-slab [ 12] and finite-cylinder specimens depend upon the radius-to- 
thickness ratio 7o of the specimen, the radiation heat loss parameter c~, and 
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the Fourier number. The differences increase when the radiation heat loss 
and Fourier number increase and the radius-to-thickness ratio decreases. 

Figure 5 shows an example of the temperature distribution progress in 
the specimen of 2?0 = 1.00. It is clear that the effect of radiation heat loss 
from the side of the specimen increases with Fourier number increases. The 
heat loss affects the outer part larger than the center, but the differences 
between the two theoretical models increase even at the center of the 
specimen when the Fourier number increases. Therefore, large errors would 
be expected when the measured temperature rise is applied to the method 
based on an infinite-slab theory, in cases of small values of ?o. 

Further, it is recognized that the discrepancies between the real 
position of the temperature sensor and the center of the specimen do not 
severely affect the accuracy of the temperature response measurements 
when they are actually small. 
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Fig. 5. Temperature distribution progress in the 
specimen. 
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In general, the effect of the radiation loss from the side of the specimen 
becomes so large for the cases 270 ~< 2.0 that measurements based on the 
theory of an infinite slab will have large errors when the value of ~ is not 
small (~ > 0.4). 

Although relative errors in the theoretical considerations of infinite- 
slab specimens compared to those of finite-cylinder specimens are about 
9 % for 27o = 2 and c~ = 0.4, for instance, the errors are decreased by the 
present consideration of finite-cylinder specimens. 

4. APPARATUS 

Figure6 shows a schematic diagram of the apparatus of the 
measurement. A specimen, indicated by oblique lines, was located at the 
approximate center of a high-temperature electric furnace, which was 
evacuated to a pressure of 10 .3  to 10 4 mm Hg by rotary and diffusion 
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Fig. 6. Block diagram of the apparatus of the measurement by heating of 
a single rectangular pulse. 
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pumps. This effectively eliminates heat conduction and convection around 
the specimen, and its oxidation. After the specimen reached a thermal 
equilibrium state, the front surface was irradiated with a single rectangular 
pulse with time period 6 obtained from a xenon arc lamp through a win- 
dow and a shutter which had a timer. The time width of irradiation was 
usually 1 to 5 s and a run was completed within several seconds. The 
radiation pulse was focused on the specimen by a parabolic mirror to have 
a uniform intensity distribution in the beam cross section. All the surfaces 
of the specimen were coated with thin carbon black to make the 
emissivities equal. 

The temperature rise at the center of the rear surface of the specimen 
was detected with a thin thermocoupte and the signal was fed to the trans- 
ient digital memory through a compensation device, a DC amplifier, and a 
low-pass filter. The purpose of the compensation device was to cancel out 
the thermoelectromotive force of the initial temperature so that only tem- 
perature rise was fed to the amplifier. The total temperature rise of the 
specimen after an irradiation was several degrees kelvin. The synchroscope, 
located in the parallel circuit, was used to confirm the curve of the tem- 
perature rise in the memory as occasion demanded. The curve was also 
recorded on an oscilloscope. The output from the digital memory was then 
fed to a computer through an interface. The thermal diffusivity a and the 
specific heat c were then simultaneously calculated by the process described 
before. 
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The combination of a phototransistor, an amplifier, and a voltmeter in 
Fig. 6 comprised a photometer which changed the reflected light into an 
electric signal to indicate the intensity of the radiant energy. 

5. EXPERIMENTAL RESULTS 

Figures 7 and 8 show the measurements of thermal diffusivity and 
specific heat of a high-purity electrolytic iron to check the performance of 
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Fig. 10. Specific heat of a chamotte brick. 

the apparatus and the method. The dashed line in Fig. 7 shows the recom- 
mended values by TPRC [14], which agree well with the present data in 
the range below the Curie point but are a little different above that point. 
The dashed line in Fig. 8 also shows the TPRC data [15], which agree 
with the present data fairly well. 

Figures 9, 10, and 11 show the thermal diffusivity, the specific heat, 
and the thermal conductivity of a chamotte brick, as examples of the 
measurements. The apparent density of the sample was 1816 kg .m 3, and 
the thermal conductivity was calculated by the equation )o = acp. 
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6. C O N C L U S I O N  

A simultaneous measuring method  of  thermal diffusivity and specific 
heat by a single rectangular  heating pulse on a finite-cylindrical specimen 
was theoretically studied with considerat ion of radiation heat losses from 
all the surfaces of  the specimen. 

Relative errors in the theoretical considerations between an infinite- 
slab specimen and a finite-cylindrical one depend upon  the radius-to- 
thickness ratio 70 of the specimen, radiat ion heat loss parameter  g, and 
Fourier  number  Fo. The errors are significant when 70 is small and g and 
F o are large, but  they are lowered by the present method. 

An appara tus  complying with these theoretical results and connected 
to a personal  computer  was developed and some examples of the 
measurements  are presented. The method  and the apparatus  made the 
measurements  of thermal diffusivity and specific heat easy even for 
materials with a low thermal conductivi ty such as nonmetals  and ceramics. 
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